

Note

A similar version of the following paper has been tentatively scheduled for publication in
the May 2006 issue of the International Journal of Computer Systems Science &
Engineering special issue on “Software Engineering for Multi-Agent Systems”. The
methodology has been developed in conjunction with Magid Nikraz of Murdoch
University in Western Australia as part of his PhD project. Comments and suggestions
are welcome – please forward them to Magid at m.nikraz@murdoch.edu.au.

 1

A Methodology for the Analysis and Design of Multi-Agent
Systems using JADE

Magid Nikraz1a, Giovanni Caireb, and Parisa A. Bahria

aSchool of Engineering Science and Parker Center, Murdoch University, Dixon Road,
Rockingham, Western Australia 6168

bTelecom Italia Lab, Via Reiss Romoli, Turin, Italy 10148

Abstract

A methodology is proposed for the development of multi-agent systems using the JADE
platform. The proposed methodology focuses on the key issues in the analysis and design
of multi-agent systems. The analysis phase is generic in nature, while the design phase
specifically focuses on the constructs provided by the popular FIPA-compliant JADE
platform. The methodology essentially serves as a guide, providing a direction for the
multi-agent system designer, while also giving them the opportunity to add or remove
components as desired, based on the specific problem domain. In contrast to current
methodologies, support is also provided for existing systems and people to be included
and accounted for in the multi-agent system.

The methodology is illustrated by applying it to a hypothetical but illustrative scenario.
Moreover, it is presented in such a way that designers new to the field of agent-based
computing and the JADE platform can quickly grasp the most important concepts in the
development of a multi-agent system. Similarly, people currently familiar with the JADE
platform can also benefit from the methodology, which, when applied, should lead to a
significant reduction in system development time.

Keywords

Agent, methodology, analysis, design.

1 To whom all correspondences should be addressed. Tel.: +61 8 9360 7135, fax: +61 8 9360 7104. Email
address: m.nikraz@murdoch.edu.au.

 2

1. Introduction

There are four fundamental phases to the software development lifecycle: planning,
analysis, design, and implementation. When implementing the software development
lifecycle, it is often useful to have some formal guidelines (i.e. a list of steps and
deliverables) on how to progress through these phases. This is the task of a methodology
[9]. A methodology saves time and effort by crystallizing the important steps that the
designer should follow, and as a result, providing them with the right “direction”. A
methodology, thus, essentially acts like a “recipe,” which helps the designer to implement
the solution by specifying some of the steps of the process, while leaving others to the
creativity of the designer [3]. The importance of a methodology in the software
development cycle can, therefore, not be overstated.

Agent-based software engineering is a relatively new field and can be thought of as a
evolution of object-oriented programming [24]. Though agent technology provides a
means to effectively solve problems in certain application areas, where other techniques
may be deemed lacking or cumbersome, there is a current lack of mature agent-based
software development methodologies. This deficiency has been pointed out as one of the
main barriers to the large-scale uptake of agent technology [20]. Thus, the continued
development and refinement of methodologies for the development of multi-agent
systems is imperative, and consequently, an area of agent technology deserving
significant attention.

Current methodologies exist for the development of multi-agent systems including Gaia
[35], MESSAGE [5], and Cassiopeia [7]. Some good reviews are provided in [3, 19, 34].
Most current methodologies attempt to adapt object-oriented analysis and design
methodologies to agent-based design [34], and in addition, follow a top-down approach.
It has been pointed out that adapting object-oriented analysis and design methodologies
to multi-agent system development has several disadvantages [34], mainly arising from
the fact that objects and agents provide different abstractions, and as a result, should be
thought at different levels [24]. In addition, the wholly top-down approach assumed by
many of the current methodologies is not sufficient for systems containing existing
resources which need to be utilized within the multi-agent system.

The proposed methodology does not attempt to extend object-oriented techniques, instead
focusing on agents specifically and the abstractions provided by the agent paradigm.
Furthermore, it combines a top-down and bottom-up approach so that both existing
system capabilities (including those provided by legacy software and people) and the
applications overall needs (based on the requirements) can be accounted for. As
mentioned above, not explicitly accounting for existing systems is a point lacking in
many of the currently available methodologies for multi-agent system development. The
proposed methodology attempts to formalize the analysis and design phases of the agent-
based software development life cycle. The formalization of the planning and
implementation phases of the software development life cycle are currently outside the
scope of the methodology, though some brief pointers are given.

 3

The design phase specifically focuses on the JADE platform, and the concepts provided
by it. JADE2 is the abbreviation for the Java Agent DEvelopment Framework and has
been developed by the Telecom Italia Lab (TILAB) in Italy, in compliance with the FIPA
(Foundation for Intelligent Physical Agents) specifications [10]. FIPA is a non-profit
organization geared at producing standards for the interoperation of heterogeneous
agents. Essentially, JADE is a middle-ware (written entirely in the Java language, using
several Java technologies), which simplifies the implementation of multi-agent systems
by providing a set of graphical tools that support the debugging and deployment phases.
The agent platform can be distributed across multiple machines, regardless of the
underlying operating system, and the configuration controlled via a remote graphical user
interface. More information on JADE can be found at [15]. By specifically focusing on
the JADE platform in the design phase, the designer can move straight to implementation
afterwards, without having to tediously adapt the results of the design phase to an agent
platform of their choice. This will obviously result in significant time gains for the
designer, in addition to providing them with a much clearer picture on how to progress in
implementation.

It is in the early stages of the software development cycle (i.e. planning), where it is
decided which tool (e.g. which programming paradigm) to use, and an assessment is
made on whether an agent-based option (among other options) is the most appropriate
solution tool. As mentioned, the proposed methodology does not formally cover
planning, and assumes that a decision has been made to use an agent-based solution.
However, it should be pointed out that the decision to use an agent-based solution should
be well thought out, since it may not always be the best option. To help in making this
decision, one should consult the literature, and in particular, applications where agent
technology has been successfully applied. Some good sources which provide tips and
guidelines on when an agent-based solution should (or should not) be used are [2, 18],
and [21], in particular. Furthermore, some potential pitfalls associated with agent-based
development, which should be taken into consideration when developing or
contemplating such a system, are outlined and discussed in [17, 36]. These valuable
references will save the designer a lot of time and effort, by preventing the unnecessary
implementation of an agent-based solution, or, on the other hand, confirming the
appropriateness of an agent-based solution, for a particular case.

The proposed methodology is presented as follows: Section 2 gives an overview of the
methodology, while also outlining the assumed definition of an agent (Section 2.1) and
the hypothetical example used to illustrate the methodology (Section 2.2). Section 3
outlines the steps in the analysis, while Section 4 outlines the steps in the design. Section
5 gives some brief indicators on the post design stage. Section 6 gives details on how the
methodology could be adapted to other agent development platforms. Finally, in Section
7, some conclusions are presented, and further work discussed.

2 JADE is a software distributed by TILAB, the copyright holder, in open source under the terms of the
LPGL (Lesser General Public License Version 2).

 4

2. Methodology Overview

As described in the Introduction, a methodology serves as a guide for the system designer
when developing a system. In general, a software development methodology may
comprise of:

• A process, i.e. a sequence of phases and steps that guide the developer in building
the system.

• A set of heuristic rules that support the developer in making relevant choices.
• A number of artifacts, i.e. diagrams, schemas or documents representing in

graphical or textual form one or more models of the system.
• A suitable notation to be used in the artifacts.
• A set of patterns that can be applied to solve common situations.
• One or more tools that: automate, as much as possible, the phases and steps

specified in the process; force consistency between the models produced;
highlight problems arising from incorrect design choices, when possible; generate
code and documentation, etc.

The current focus of the proposed methodology is on the process and the artifacts that are
produced, illustrating them through an example (detailed in Section 2.2). A draft notation
is also introduced to be used in constructing these artifacts and, where relevant, some
heuristic rules and design patterns are presented. The described process covers the
analysis phase and the design phase and is shown in Figure 1. The analysis phase is
general in nature and independent of the adopted platform. Conversely, the design phase
specifically assumes JADE as the implementation platform and focuses directly on the
classes and concepts provided by JADE (for other platforms, see Section 6). Observing
Figure 1, it can be seen that there is no strict boundary between the analysis and design
phases. Moreover, the methodology is of an iterative nature, thus allowing the designer to
move back and forth between the analysis and design phases and the steps therein.

At the end of the design phase, the developer should be able to progress straight to the
implementation, which is where the actual coding occurs. In addition, most of this phase
can probably be carried out by means of a proper tool which automates the
implementation process. However, this point, and likewise, testing and deployment, are
not addressed formally in the current version of the proposed methodology (as shown in
Figure 1), leaving them as a topic for further work3 (see Further Work, Section 7).

The planning stage, like implementation and testing, is not formally addressed in the
proposed methodology. However, for the sake of the methodology, a question is included
(see Figure 1), which initially asks if the designer has made a rational decision on
whether to use an agent-based solution. If the answer is yes, the designer moves on the
analysis, while if the answer is no, the designer should seek an alternative solution4. As

3 Some informal pointers are provided in Post Design (Section 5).
4 Obviously planning, which is the first phase in the software development life cycle, will entail many other
considerations. For the sake of analysis and design though, the only assumption required in the proposed
methodology is that an agent-based solution has been chosen as the best alternative.

 5

mentioned in the Introduction, the decision on whether to adopt an agent-based solution
is one which should be made by the designer only after consulting the literature, and, if
possible, analyzing their problem with respect to some guidelines (such as in [21]).
Furthermore, observing problem domains and cases where an agent-based solution has
been implemented effectively, is also another good indicator of the appropriateness of an
agent-based solution.

As with any methodology, some assumptions must be made. These include:

• The definition of an agent defined in Section 2.1 is assumed.

1 - Use Cases
(Section 3.1)

2 - Interaction Specification
(Section 4.2)

6 - Agent Deployment Information
(Section 3.6)

5 - Agent Refinement
(Section 3.5)

2 - Initial Agent Types Identification
(Section 3.2)

4 - Acquaintances Identification
(Section 3.4)

3 - Responsibilities Identification
(Section 3.3)

10 - Content Language Selection
(Section 4.10)

9 - Defining an Ontology
(Section 4.9)

8 - Internal Agent Behaviours
(Section 4.8)

7 - Agent-User Interactions
(Section 4.7)

6 - Agent-Resource Interactions
(Section 4.6)

5 - Description to be Registered/Searched (Yellow Pages)
(Section 4.5)

4 - Message Templates
(Section 4.4)

3 - Ad-Hoc Interaction Protocol Definition
(Section 4.3)

2. Analysis 3. Design

Not formally addressed
(Section 5)

4. Implementation
& Testing

Move back and forth

1 - Agent Splitting/Merging/Renaming
(Section 4.1)

1. Planning
Not formally addressed

Is an agent-based
solution the best

alternative?

Yes

Use another
technique

No

Figure 1. Overview of the methodology.

 6

• The JADE platform is the platform of choice for implementation.
• There are a relatively small number of agents (less than 100).
• The organizational structure of system is static, meaning that non-emergent

behaviour at runtime is not expected, and thus, not considered.
• No specific target domain is assumed.
• Security is not a concern.

2.1 What is an Agent?

The term agent is very broad and has different meanings to different people. However, on
close observation of the literature, it is sufficient to say that two usages of the term agent
can be identified: the weak notion of agency and the strong notion of agency [37]. The
weak notion of agency constitutes the bare minimum that most researches agree on, while
the stronger notion of agency is more controversial and a subject of active research.

The weak notion of agency denotes a software-based computer system with the following
properties [37]:

• Autonomy: agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal state.

• Social ability: agents interact with other agents (and possibly humans) via some
kind of agent communication language.

• Reactivity: agents perceive their environment and respond in a timely fashion to
changes occurring therein.

• Pro-activeness: in addition to acting in response to their environment, agents are
able to exhibit goal-directed behaviour by taking the initiative.

The strong notion of agency is an extension of the weaker notion, and advocates
additional humanistic, mental properties such as belief, desire, and intention [29].

Consistent with the weak notion of agency, one author [13] has gone so far as to say that
software agents are application programs that communicate with each other in an
expressive agent communication language. Though at first this definition may seem a
little simplistic, it allows one to clearly identify what constitutes a multi-agent system, i.e.
agents are just pieces of autonomous code, able to communicate with each other using an
agent communication language. The view of agents assumed in the proposed
methodology is based on this definition. Specifically, the methodology assumes the
following definition for an agent:

agents reside on a platform that, consistent with the presented vision,
provides the agents with a proper mechanism to communicate by names,
regardless of the complexity and nature of the underlying environment
(i.e. operating systems, networks, etc).

Thus, the assumed view is exactly the same as that presented in [13], but in addition, the
agents have unique names as a means of identification.

This particular view of agents is the only assumption for analysis, while the design is
specific to the JADE platform, which is a FIPA-compliant realization of the above vision,
i.e. in the design phase, the constructs provided by the JADE platform are assumed.

 7

2.2. The Cinema Organizer Scenario

The proposed methodology is illustrated by applying it to a simple scenario referred to
henceforth as the cinema organizer case study.

In the cinema organizer case study, it is assumed that a mobile telecom operator wants to
provide a service to its subscribers (cinema organizer users), which will support a group
of friends in organizing an evening to the cinema. The service should allow a subscriber
to: invite some friends to see a movie, collect preferences from both the inviter and the
invitees, and suggest the option that best matches the average preferences of the group.

The service must be accessible by users through their mobile phones. It is also assumed
that the mobile operator has proper agreements with one information provider for each
city the cinema organizer service is going to be offered in. These providers will make
available all the information related to the cinemas in the local city, and the schedules of
movies in these cinemas.

Users can move freely between cities and the system must account for this. User
localization (i.e. where the user is situated) must be based on the mobile operator
localization system. The system allows for the retrieval of the position of a mobile phone
given its telephone number and notification of relevant changes in the mobile’s position.

3. Analysis

The analysis phase aims to clarify the problem without any (or minimal) concerns about
the solution. In the proposed methodology, the analysis phase is carried out through a
number of steps, described in Sections 3.1-3.6.

3.1 Step 1: Use Cases

Use cases are an effective way to capture the potential functional requirements of a new
system. Each use case presents one or more scenarios that demonstrate how the system
should interact with the end user or another system to achieve a specific goal. There are a
number of standards for representing use cases. The most popular is the Unified
Modeling Language (UML) specification [33], which defines a graphical notation (as an
alternative, it is also possible to produce written use cases). Though use cases are used
extensively by object-oriented practitioners, their applicability is not restricted to object
oriented systems, because they are not object orientated in nature [14]. Hence, it is also
possible to apply use cases (without modification) to capture the functional requirements
of multi-agent systems.

Based on the description of the cinema organizer case study given in Section 2.2, and
after interviewing the potential system users, it is possible to build up a preliminary list of
possible scenarios. Accordingly, the use cases can be defined, and a use case diagram
produced as shown in Figure 2.

 8

3.2 Step 2: Initial Agent Types Identification

This step involves identification of the main agent types and subsequent formation of a
first draft of the agent diagram. The following rules should be applied in this step:

• Add one type of agent per user/device.
• Add one type of agent per resource (which includes legacy software).

By applying the above rules to the cinema organizer case study, the initial diagram shown
in Figure 3 is obtained.

The agent diagram is one of the main artifacts produced in the analysis phase and is

Initiate
Invitation

Handle Incoming
Invitations

Mobile network

Cinema
Organizer

User

Friends
Selection

Preferences
Insertion

Cinema Schedules
Presentation

Accept Invitation

Decline Invitation

Cinema
Information

Provider

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure 2. Use case diagram for cinema organizer case study.

Cinema
Organizer

Agent

Cinema
Organizer

User

Localization
Agent

Mobile
Operator

Localization
System

Provider
Agent

Cinema
Schedules
Database

Figure 3. Agent diagram for cinema organizer case study after Step 2.

 9

progressively refined from Steps 2 to 5. With reference to Figure 3, the agent diagram
includes four types of elements:

1. Agent types: the actual agent types, represented by circles.
2. Humans: people that must interact with the system under development,

represented by the UML actor symbol.
3. Resources: external systems that must interact with the system under

development, represented by rectangles.
4. Acquaintances: represented by an arrow linking instances of the above elements,

specifying that the linked elements will have to interact in some way while the
system is in operation. Note that, at this stage, only acquaintances between agents
and resources/humans are shown in the agent diagram (i.e. agent-agent
interactions are deferred to a later step).

It should be noted that in the agent diagram, unlike UML use case diagrams, a distinction
is made explicitly between humans and external systems. Interacting with a human
through a user interface presents additional problems with respect to interacting with an
external system as is highlighted in Steps 6 and 7 of the design phase (Sections 4.6 and
4.7, respectively).

The way external/legacy systems and people that interact with the agents are accounted
for in a multi-agent system, is an important consideration (and one that is lacking in many
currently available methodologies, as described in the Introduction). One author has
defined three techniques (see Figure 4) to account for such entities [13]:

• The use of a transducer agent. The transducer agent serves an interface between a
legacy system and the other agents in the system. The transducer agent accepts
messages from the agents in the system (in agent communication language),
translates them into the legacy systems native language, and forwards these
equivalent messages to the legacy system. Similarly, in the reverse direction, the
transducer agent receives the legacy systems responses and makes them available
to the other agents in the system. In addition to acting as an interface between
agents and legacy software, the transducer approach also works for other
resources such as files and people (more details given in Section 4.6 and 4.7,
respectively).

• The insertion of a wrapper. A code is injected into the legacy resource (i.e.
software in this case), provided the legacy resource’s code is available. This
inserted code will allow the resource to communicate in agent communication
language, thus, converting it into an agent.

• Rewriting of the code. This is the most extreme approach, which involves
rewriting the code to mimic (and possibly extend) the operation and capabilities
of the legacy resource (i.e. software in this case), but with the added ability to
communicate in agent communication language. Note that this approach is
usually the last resort, when no other options (i.e. the use of a transducer or a
wrapper) are deemed practical.

 10

In the agent diagram produced in this step (see Figure 3), the agents are acting as
transducers, i.e. as an interface between the external/legacy systems/people, and the other
agents in the system. Transducers are seen, in general, as the most practical and efficient
method for accounting for legacy systems and are advocated in the proposed
methodology. The reason is that by treating the legacy systems as a black-box, there is no
need to tamper with or rewrite code, thus providing a quick means to get that resource
functioning as part of the multi-agent system (though translating between agent
communication language and the resources language is not always trivial). However, in
some cases a wrapper may be more relevant, and to an extreme rewriting, but such
considerations should be deferred to the design stage (i.e. in the analysis it suffices to
assume the transducer approach).

3.3 Step 3: Responsibilities Identification

In this step, for each identified agent type, an initial list is made of its main
responsibilities in an informal and intuitive way. The artifact resulting from this process
is the responsibility table.

The following rules should be applied in this step:

• Derive the initial set of responsibilities from the use cases identified in Step 1.
• Consider the agents where these responsibilities are clearer first and delay the

identification of responsibilities for other agents to later steps.
By applying the above rules to the cinema organizer case study, the consideration of the
cinema organizer agent is initiated and Table 1 is produced.

Many existing methodologies such as Gaia [35] and MESSAGE [5] propose a different
approach where atomic roles (roughly equivalent to responsibilities defined in this step)
are initially identified and then possibly merged into agent types. However, this approach
is considered less intuitive because in some cases it may become difficult to determine
how the atomic roles should be aggregated into agent types, i.e. how many agent types

Transducer
Approach

Wrapper
Approach

Rewriting

External/Legacy
Resource

Transducer

Legacy
Code Rewrite

Wrapper

ACL

ACLACL

Figure 4. Different approaches to account for external/legacy systems.

 11

there should be and which type should cover which atomic role(s). The definition of
agent types then responsibilities, as in the proposed methodology, removes this
ambiguity.

3.4 Step 4: Acquaintances Identification

In this step, the focus is on who needs to interact with whom and the agent diagram
(Figure 3) is updated by adding proper acquaintance relations connecting agents that need
to have one or more interactions. The term acquaintance comes from Gaia [35], and is
used in the same sense in the proposed methodology.

An obvious acquaintance relation in the cinema organizer case study is required between
different cinema organizer agents: the inviter and the invitees. Then, since a cinema
organizer agent must present cinema schedules to its user and this information is stored in
the provider’s database and made available by the relevant provider agents, there will
certainly be an acquaintance relation between the cinema organizer agent and the
provider agent. Thus, going one step backward (to Step 3, Section 3.3), some new
responsibilities can be added to the cinema organizer agent and the provider agent. For
the cinema organizer agent, these are:

• Present (to the user) incoming invitations from other cinema organizer agents.
• Let the user accept an incoming invitation.
• Let the user reject an incoming invitation.
• Retrieve cinema schedules from the relevant provider agent.

For the provider agent, the new responsibility is:
Respond to cinema schedules retrieval requests from cinema organizer agent.

Therefore, the agent diagram is updated as in Figure 5, and the responsibility table
updated as in Table 2. Note that no distinction is made between acquaintances and
responsibilities, so that all acquaintances are placed in the responsibility table and not
separated.

Table 1. Responsibility table for cinema organizer case study after Step 3.

Agent type Responsibilities
Cinema organizer agent Serve requests to initiate invitations from the cinema

organizer user.
Let the cinema organizer user select friends to invite.
Let the user insert preferences about movies and cinemas.
Present cinema schedules.
Respond to invitations from other cinema organizer agents.

 12

3.5 Step 5: Agent Refinement

In this step, the set of agent types initially identified in Step 2 (see Section 3.2) are
refined by applying a number of considerations. These are related to:

• Support: what supporting information agents need to accomplish their
responsibilities, and how, when and where is this information generated/stored.

• Discovery: how agents linked by an acquaintance relation discover each other.
• Management and monitoring: is the system required to keep track of existing

agents, or the starting and stopping of agents on demand.
These above considerations are discussed in more detail in Sections 3.5.1, 3.5.2, and
3.5.3, respectively.

Cinema
Organizer

Agent

Cinema
Organizer

User

Localization
Agent

Mobile
Operator

Localization
System

Provider
Agent

Cinema
Schedules
Database

Figure 5. Agent diagram for cinema organizer case study refined after Step 4.

Table 2. Responsibility table for cinema organizer case study updated after Step 4.

Agent type Responsibilities
Cinema organizer agent Serve requests to initiate invitations from the cinema

organizer user.
Let the cinema organizer user select friends to invite.
Let the user insert preferences about movies and cinemas.
Present cinema schedules.
Present incoming invitations from other cinema organizer
agents.
Let the user accept an incoming invitation.
Let the user reject an incoming invitation.
Retrieve cinema schedules from the relevant provider
agent.

Provider agent Respond to cinema schedules retrieval requests from
cinema organizer agents.

 13

3.5.1 Support

These considerations are highly dependent on the domain, and hence, it is quite difficult
to provide generic indications. In the cinema organizer case study, the only additional
information with respect to what has already been taken into account is that the cinema
organizer agent requires the city it is currently in. Thus, the cinema organizer agent is
required to question the provider agent for details of the current city when retrieving the
cinema schedules information. This information, however, can be obtained by accessing
the localization system through the localization agent and therefore there is no need for
any new agent type in this case. Therefore, going back to Step 4 (Section 3.4), an
acquaintance relation is added between the cinema organizer agent and the localization
agent (see Figure 6), and (back again to Step 3, Section 3.3) new responsibilities are
added to the cinema organizer agent and the localization agent: “retrieve current city
from the localization agent” and “respond to city retrieval requests from cinema organizer
agents,” respectively (see Table 35).

3.5.2 Discovery

In the simplest case, agent discovery can be accomplished by means of proper naming
conventions. For example, in the cinema organizer case study, it can be assumed that the
cinema organizer agent acting on behalf of a user and running on his or her mobile phone
is named using the user’s telephone number. This immediately allows a cinema organizer
agent to identify the other cinema organizer agents to send an invitation to when its user
selects some friends to organize an evening at the cinema. Adopting naming conventions
is very simple and efficient, but has some limitations:

• Agent names must be globally unique. Thus, while a convention based on
telephone numbers is typically acceptable, a convention based on people’s names
may often lead to duplication problems.

• Agents which are going to be involved in an interaction must typically be known
in advance. For example, it can also be assumed that the localization agent has a
predefined name “localizer”. This works well provided that it is known in
advance that there is one, and only one, such agent.

• Assuming naming conventions is typically not very extensible. Referring to the
cinema organizer case study, assume that the provider agent for a given city is
named after that city, e.g. the provider agent for CityX is called CityXProvider
agent. In this way, given a city, the provider agent to retrieve cinema schedules
for that city is immediately known. If it was desired to extend the system so that
there can be more providers for each city, or a given provider can cover more that
one city, clearly the proposed naming system would no longer work.

• Naming conventions may lead to additional work when applied to an agent that
can appear and disappear dynamically. The reason being that a naming
convention does not provide any presence information, and therefore, addressed
agents may not be available when an attempt is made to contact them.

5 Responsibility 9 for cinema organizer agent and responsibility 1 for localization agent.

 14

• Naming conventions cannot be adopted when different users may start their own
agents and choose names themselves. In such cases, there is no guarantee that
name uniqueness is preserved.

A more sophisticated way to solve the agent discovery problem is the adoption of a
yellow pages mechanism. This allows discovery of agents on the basis of their
characteristics, e.g. the services they provide. A yellow pages mechanism can be fully
distributed across all agents in the system or centralized with a single agent (with a well-
known name) responsible for it. Even if this choice, at this point, is a high level design
choice, considering that the proposed methodology targets the JADE platform, it is
strongly suggested to adopt a centralized approach. This approach completely maps to the
directory facilitator agent provided by JADE and thus saves a lot of work in successive
phases of the development process.

In the cinema organizer case study, it is assumed that there are some extensibility
requirements so that the “one provider per city” relation may no longer be true in the
future. A yellow pages mechanism is thus adopted for the discovery of provider agents
and a yellow pages agent is added to the agent diagram (see Figure 6).

For more information about service discovery mechanisms (including centralized and
decentralized solutions) in multi-agent systems, refer to [6, 30].

3.5.3 Management and Monitoring

Other agent types can be added to address issues such as monitoring agent faults and
restoring them, creation of supporting agents that are needed only under certain
conditions, or providing presence information. No new agent types need to be added in
the cinema organizer case study for management and monitoring purposes.

Having refined the set of agent types, the process is to go back to Steps 2, 3, and 4
(Sections 3.2, 3.3, and 3.4, respectively), and iterate until sufficiently detailed
descriptions of the agent types, their responsibilities, and acquaintance relations,
respectively, are reached6. On doing this, with respect to the cinema organizer case study,
the artifacts shown in Figure 6 and Table 3 are obtained.

3.6 Step 6: Agent Deployment Information

Another artifact that can be useful to produce is the agent deployment diagram, where the
physical hosts/devices agents are going to be deployed (referred to as domains in some
methodologies) are indicated. The agent deployment diagram for the cinema organizer
scenario is shown in Figure 7.

It should be noted that this diagram is not intended to give any detailed information about
deployment (in contrast to the UML deployment diagram, where details such as the

6 Note that these iterations mentioned here have been (and may be) carried out partially in Sections 3.5.1-
3.5.3.

 15

communication modes between nodes are given). The sole purpose of the agent
deployment diagram is to highlight basic deployment requirements that are referred to
during design when applying considerations such as agent splitting and merging (Section
4.1) or when considering communication efficiency.

Cinema
Organizer

Agent

Cinema
Organizer

User

Localization
Agent

Mobile
Operator

Localization
System

Provider
Agent

Cinema
Schedules
Database

Yellow
Pages
Agent

Figure 6. Agent diagram for cinema organizer case study refined after Step 5.

Table 3. Responsibility table for cinema organizer case study updated after Step 5.

Agent type Responsibilities
1. Serve requests to initiate invitations from the cinema
organizer user.
2. Let the cinema organizer user select friends to invite.
3. Let the user insert preferences about movies and
cinemas.
4. Present cinema schedules.
5. Present incoming invitations from other cinema
organizer agents.
6. Let the user accept an incoming invitation.
7. Let the user reject an incoming invitation.
8. Retrieve cinema schedules from the relevant provider
agent.
9. Retrieve the current city from the localization agent.

Cinema organizer agent

10. Retrieve the relevant provider agent from the yellow
pages agent.
1. Respond to cinema schedules retrieval requests from
cinema organizer agents.

Provider agent

2. Register with the yellow pages agent.
1. Respond to city retrieval requests from cinema
organizer agents.

Localization agent

2. Notify city changed to cinema organizer agents.

 16

3.7 Analysis Summary

The analysis aims to clarify the problem to a sufficient level of detail, with minimal
concern about the solution. The steps in the analysis phase can now be summarized
below:

• Step 1: Use Cases. The system requirements are analyzed and a use case diagram
created based on these requirements.

• Step 2: Initial Agent Types Identification. By applying a set of rules, an initial
diagram of the multi-agent system called the agent diagram is produced.

• Step 3: Responsibilities Identification. By observing the agent types produced in
the agent diagram and applying a set of rules, an initial table of responsibilities is
produced, called the responsibility table, for those agents whose responsibilities
are clear initially.

• Step 4: Acquaintances Identification. The obvious acquaintances between agents
are identified, and subsequently the agent diagram and responsibility table are
updated.

• Step 5: Agent Refinement. The agent diagram and responsibility table are updated
by applying a number of considerations related to support, discovery, and
management and monitoring.

• Step 6: Agent Deployment Information. The agent deployment diagram is
produced, where the agents and the physical hosts/devices the agents are going to
be deployed are indicated.

• Iterate Steps 1-6.
The important elements gained from carrying out the above steps are the artifacts. These
artifacts form the basis for the design phase. The artifacts produced in each step and their
relationships are summarized in Figure 8.

Cinema
Organizer

Agent
Provider

Agent

Localization
Agent

Yellow
Pages
Agent

Cinema Organizer User
Mobile Phone

Provider Server Mobile
Operator Server

Figure 7. Agent deployment diagram for cinema organizer case study after Step 6.

 17

4. Design

Once the problem has been clarified to a sufficient level of detail, a move is made from
the analysis to the design phase, which aims to specify the solution. There is not a strong
boundary between these two phases, and while iterating on the analysis or design, one
can move between the two (see Figure 1). Since from this point on, the proposed
methodology focuses on the JADE platform (and hence, the constructs provided by it), it
may not be suitable for direct application to other multi-agent development platforms
(see Section 6 for further information). Carrying out the design phase will allow one to
reach a level of detail that is sufficient enough to have a relatively straightforward
transition to the implementation, with the possibility of a significant amount of code
being generated by an automatic tool (see Further Work, Section 7).

Since the design phase is specific to the JADE platform, there may be some parts that are
unfamiliar to new JADE users. If this is the case, the user is referred to the rich set of
tutorials, documents and programming APIs provided by the JADE team. More details
are given in Post Design (Section 5).

Use Case
Diagram

Agent
Diagram

Responsibility
Table

Agent
Deployment

Diagram

update

update

Iterate: Steps 1-6

Step 1

Step 2

Step 6

Step 5

Step 4

Step 3

Figure 8. Summary of the analysis phase.

 18

Similar to the analysis, the design phase is carried out by following a number of logical
steps, with a certain degree of overlap. As has been mentioned, the designer is not
required to strictly follow these steps, and can add or remove steps and other relevant
specifications as they desire. The steps in the design phase are discussed in detail in
Sections 4.1-4.10.

4.1 Step 1: Agent Splitting/Merging/Renaming

This step involves observing the artifacts produced in the design phase and determining
whether the agent types produced in the agent diagram should be split or merged. This
step is considered important, since it has a direct effect on overall system efficiency and
complexity. Based on this, the following rules should be applied in this step:

• Data duplication should be avoided. If there are two or more agents that share a
large majority of the information required to carry out their tasks, these agents can
possibly be merged into a single one.

• Duplication of code to access resources should be avoided. If there are two or
more agents that need to access the same resource, these agents can possibly be
merged.

• Avoid splitting agents unless there are good reasons for doing this (see below).
Dealing with too many agents increases the overall system complexity and
decreases system efficiency since unnecessary communication between agents
will possibly take place.

• Each agent is situated on a single machine. A major factor which leads the
splitting of an agent is deployment issues (based on the deployment diagram – see
Section 3.6). If two pieces of functionality must be provided on different
machines, these pieces of functionality must be provided by different agents.

• Avoid having agents that are too big and complex. This makes them difficult to
design and to maintain.

• In some cases where the wrapper approach is used (see Section 3.2), the agent is
assumed to cover and take the size of the java code it is wrapping. Thus, in such a
case, it may be difficult to merge or split such an agent. Furthermore, this is
another good reason to adopt the transducer approach discussed in Section 3.2.

Looking at the third and fifth rules, there may seem to be a contrast. However, what is
being advocated here is a rational balance between an excessive number of simple agents
and a small number of large complex agents.

In the case of the cinema organizer case study, there are a relatively small number of
agent types identified in the analysis phase. Hence, splitting or merging of agent types is
not considered to be a major issue.

4.2 Step 2: Interactions Specification

In this step, for each agent type, all responsibilities that are related to an acquaintance
relation with another agent (based on the responsibility table produced in analysis) are

 19

taken into account and an interaction table is produced for each agent type. Each row in
the table will represent an interaction and will include:

• A descriptive name for the interaction.
• The responsibility (identified in the responsibly table produced in the analysis

phase) that originates this interaction. This links design artifacts to analysis
artifacts and can be used later to check consistency.

• A suitable interaction protocol (IP) chosen to implement the interaction. The
standard FIPA interaction protocols should be considered as a candidate first [11].
If none of these protocols are deemed suitable, an ad-hoc interaction protocol
should be defined, as described in Step 3 of the design phase (Section 4.3).

• The role played by the considered agent in the interaction protocol. This can be I
for initiator or R for responder. Other roles can possibly be added if required.

• The agent type and name (if relevant) of the complementary role.
• The trigger condition, i.e. when this interaction takes place. This condition should

be expressed in an informal but descriptive way.
Table 4 shows how the interaction table might look for the cinema organizer agent.

Similar tables can be filled for the other agent types identified in the analysis phase. It
should be noted that since the focus is now on JADE, it is necessary to consider the
features provided by the JADE platform. Hence, it is possible to start mapping the yellow
pages agent with the ready-made JADE directory facilitator. More information on this is
provided in Step 4 of the design phase (Section 4.4).

Table 4. Interaction table for cinema organizer agent after Step 2 of design.

Interaction Resp. IP Role With When
Invite other
users.

1 Contract
Net

I Cinema
organizer
agent

The user
initiates an
invitation.

Respond to an
invitation.

5 Contract
Net

R Cinema
organizer
agent

An invitation is
received.

Retrieve cinema
schedules.

8 FIPA
Request

I Provider
agent of the
current city

- Startup.
- A city change
is detected and
the provider for
the new city has
been retrieved.

Retrieve the
current city.

9 FIPA
Subscribe

I Localization
agent

Always.

Retrieve the
provider agent
for a given city.

10 FIPA
Request

I Yellow pages
agent

- Startup.
- A city change
is detected.

 20

4.3 Step 3: Ad-Hoc Interaction Protocol Definition

Whenever possible, existing interaction protocols defined by FIPA should be adopted
[11]. However, it is often the case that an interaction requires an ad-hoc interaction
protocol to be defined (i.e. when none of the FIPA defined interaction protocols are
deemed adequate). In such cases, the interaction protocol should be defined by means of
a proper formalism. Two options are suggested for this:

• The interaction protocol formalism defined in AUML [12].
• Other (possibly user-defined) interaction protocols such as the FSM7-based

formalism (see Further Work, Section 7), Petri-nets [8], or enhanced Dooley
graphs [25]. Some good reviews on the modeling of agent conversation are
provided in [23, 27].

The reason for including alternative interaction protocols in addition to AUML is that
although AUML is suitable for simple conversations, it is not practical for expressing
complex interaction sequences.

In the case where an ad-hoc interaction protocol is required, a schema should be provided
with its definition. This schema should be compliant with the AUML formalism, or, in
the future, with the proposed FSM-based formalism.

4.4 Step 4: Message Templates

All the interaction protocol roles identified in the previous step are implemented as JADE
behaviours (see Section 4.8). In this step, suitable MessageTemplate objects are
specified to be used in these behaviours to receive incoming messages, and these
templates are added to the rows of the interaction table. The following rules should be
applied in this step:

• Use MessageTemplates based on the conversation ID in behaviours implementing
initiator roles (ensure conversation IDs generated within an agent are unique).

• Merge in a single behaviour responder roles dealing with the same combination of
initiation message performative, ontology, and language.

• Use MessageTemplates based on the above combinations of performative,
ontology, and language, in all always-active behaviours implementing responder
roles.

• Analyze conflicts (this can be carried out by means of a proper automatic tool as
discussed in Further Work, Section 7) and modify MessageTemplate used in
responder behaviours.

• If conflicts cannot be solved working on performative, ontology, and languages,
consider applying the dynamic template pattern described in Section 4.4.1.

It should be noted that at this stage some assumptions are made about the ontology and
language used in the system when specifying the templates. This will, therefore,
necessitate refinements in later steps. Based on the above rules, Table 4 can be updated to
Table 5 which is partially shown below.

7 FSM is the abbreviation for Finite State Machine.

 21

4.4.1 The Dynamic Template Pattern

The dynamic template pattern shown in Figure 9 is based on the usage of a
jade.lang.acl.ConversationList object inside the agent. All initiator behaviours
register to the ConversationList in their onStart() method and deregister in their
onEnd() method. The ConversationList therefore can keep track of all interactions
initiated by the agent and is able to provide a MessageTemplate that matches all
messages not belonging to any of these conversations. Responder behaviours with
conflicting templates can then use the template provided by the ConversationList
(properly refined with combinations of performative, ontology, and language) to avoid
conflicts with all initiators.

4.5 Step 5: Description to be Registered/Searched (Yellow Pages)

In this step, the naming conventions and the services registered/searched by agents in the
yellow pages catalogue maintained by the JADE directory facilitator are formalized
(when relevant).

Naming conventions are mainly domain dependent and it is suggested to use natural
language to specify them. Furthermore, a class diagram form is proposed to describe
service registrations/searches as shown in Figure 10 with reference to the cinema
organizer case study.

4.6 Step 6: Agent-Resource Interactions

It is often the case that one or more agents in the system must interact with external
resources such as databases, files storing information, or legacy software. In some cases
some hardware appliances must be controlled or monitored, but this always happens
through some dedicated software that actually hides the hardware behind it. Agents
interacting with external resources have been identified in Step 2 of the analysis phase
(Section 3.2), and are expressed in the agent diagram by an acquaintance relation with a
resource element. Such resources can be classified into two main categories:

Table 5. Interaction table for cinema organizer agent after Step 4 of design.

Interaction Resp. IP Role With When Template
Invite other
cinema
organizer
agent users.

1 Contract
Net

I Cinema
organizer
agent

The user
initiates an
invitation.

Conv-id

Respond to
an
invitation.

5 Contract
Net

R Cinema
organizer
agent

An invitation
is received.

Perf = CFP

……

 22

• Passive resources: resources that change their status only as a consequence of
some stimulus issued by the agent controlling the resource itself.

• Active resources: resources that may change their status independently from the
controlling agent.

Agent interactions with passive and active resources as defined above are discussed in
Sections 4.6.1 and 4.6.2, respectively.

Agent
(f rom core)

Behaviour
(f rom behav iours)

0..*

Initiator

ConversationList
(from acl)

1

Responder

MessageTemplate
(from acl)

0..*

1

executes

register/deregister

produces

uses

Figure 9. The dynamic template pattern.

Provider
Agent

pa_SD: ServiceDescription

type = cinema-schedules
ontology = cinema-onto
language = fipa-sl
protocol = fipa-request

pa_Properties: Properties

city = <city-name>
provides

Cinema
Organizer

Agent

coa_SD: ServiceDescription

type = cinema-schedules
coa_Properties: Properties

city = <city-name>
searches

Figure 10. Service registrations and searches in the cinema organizer case study.

 23

4.6.1 Passive Resources

Examples of passive resources are a database fully controlled by the interacting agent, a
data file in the local file system or a C library providing computational functions.

Interacting with passive resources is out of the scope of this methodology. Moreover, a
JADE agent is, in effect, a piece of Java code and standard Java techniques can be used to
handle these cases. For example, in the case of a database, JDBC should be used, in the
case of a data file java.io should be used, and in the case of a C library, the JNI should
be used. These are standard Java techniques and their explanation is out of the scope of
the proposed methodology.

4.6.2 Active Resources

Examples of active resources are a database where a human operator (or an external
program) can insert or modify data, a log file continuously filled (updated) by an external
program, an appliance that can raise alarms and software controlling a sensor detecting
changes in the local environment. Active resources may provide a listener-based interface
so that the controlling agent can immediately detect changes inside the resource. In other
cases, the resource may provide an interface with methods that block until a change is
detected, e.g. a network socket where some data is expected to be received. Finally, in
certain cases the only way to detect relevant changes in an active resource is to
periodically poll the resource itself.

Though several approaches are possible to deal with active resources, a single approach is
proposed, which attempts to homogenize all the possible combinations of cases described
above. This approach is based on the following rules:

• If no listener-based interface is available, use a dedicated Java thread, or pool of
threads, to emulate it, i.e. to detect relevant changes inside the resource and act as
listener notifier.

• Provide the notifier with a listener implemented so that each call from the notifier
results in adding a proper Behaviour to the agent according to the Listener adding
behaviours pattern depicted in Figure 11.

• Use a jade.util.Event object and its waitUntilProcessed() and
notifyProcessed() methods to synchronize the listener and the added
Behaviour when a result (produced by the behaviour) must be passed back to the
notifier as the return value of a method of the listener interface.

The proposed approach is quite flexible and avoids synchronization problems between
the notifier threads and the agent thread since all relevant operations are carried out by
the agent thread within the added behaviours. Moreover, using different behaviours to
serve the events generated by the notifier transparently deals with the case where the
notifier holds several threads that may notify events concurrently.

 24

4.6.2.1 Querying a Relational Database

A particular case that deserves some more consideration is that of a relational database.
Since querying a database is typically performed using a very flexible language such as
SQL, just applying the transducer approach discussed in Step 2 of analysis phase (Section
3.2) to a database, may not be the right choice, since only the controlling agent (i.e. the
transducer) can actually exploit the power of SQL. Another agent wishing to retrieve
information from the database should send a query expressed in, for example, SL (see
Section 4.10 for more information on Content Languages including SL) to the transducer,
that, on its turn, should translate it into SQL, get the result from the database, and send
them back to the initiator. However, expressing SQL queries in SL is definitely not a
trivial task and typically one ends up with mapping all possible queries that other agents
may wish to perform on the database to dedicated actions, thus making the domain
ontology much more complex than it should be.

The approach proposed is to stick to the transducer approach and avoid embedding JDBC
code inside all agents that may need to query the database, as depicted in Figure 12, and
is based on the Iterated version of FIPA-Request-like protocols and on the JDBC
ontology that is currently under development. The former is just an extension of the
normal FIPA-Request protocol, but allows one to obtain the results divided in chunks,
rather than all together. The latter is an ontology that provides a single concept basically
mapping the JDBC ResultSet.

The proposed solution preserves the full power of SQL/JDBC without the need for
embedding JDBC code (and the related complexity) inside all agents that need to perform
queries on the database. Furthermore, this shows the effectiveness of the transducer
approach over other approaches (see Section 3.2).

Notifier

Listener

Agent
(f rom core)

notifies

ListenerImplBehaviour
(f rom behav iours)

0..*0..*

executes

activates

Event
(f rom util)

synchronizessynchronizes

1..*

Figure 11. The listener adding behaviour pattern.

 25

4.7 Step 7: Agent-User Interactions

In many cases, an agent needs to interact with a user. Agents interacting with users have
been identified in Step 2 of the analysis phase (Section 3.2) and are expressed in the
agent diagram by an acquaintance relation with an actor element.

There are several ways a human user can interact with a piece of software such as a
JADE agent. Here, the focus is on the graphical user interface (GUI), which is by far the
most commonly used type of user interface. Two cases are distinguished:

• A local GUI, typically implemented using Swing, the Abstract Windowing
Toolkit (AWT) or some other graphical toolkit.

• A web GUI implemented using JavaServer Pages (JSP) technology.
In both cases, one could argue that a GUI can be viewed as an active resource and the
rules listed in Step 6 of the design phase (Section 4.6) should apply to the agent-user
interactions too. On the contrary, however, it can be argued that there are elements which
make the GUI case more complex with respect to a generic external resource. Thus, it is
necessary that the local GUI and the web GUI cases are discussed in more detail in
Sections 4.7.1 and 4.7.2, respectively.

4.7.1 Local GUI

Here, the main issue is that the agent and the GUI must typically work on the same data
(the agent to perform its domain specific tasks, and the GUI to present the data to the
user), but must organize this data in different ways. As an example, the developer may
want to organize a list of elements as a tree to support fast searches based on some
criteria, while a java.awt.List would be the best structure to keep the same data from

Transducer
Agent

Querying
Agent

(QUERY_REF :language sql :content sql-statement)

(INFORM :language sl :ontology JDBC-ontology)

(QUERY_REF)

Database

(INFORM :language sl :ontology JDBC-ontology)

SQL
JDBC

Figure 12. Performing SQL queries on a “transduced” database.

 26

an AWT GUI point of view. The risk, therefore, is to end up with duplication of data and
consequent problems in keeping this data consistent.

Using a toolkit such as Swing, which implements the Model-View-Controller
architecture [22], it is possible to overcome this problem by applying the following rules:

• Store data inside the agent in structures that are suitable to accomplish agent
tasks.

• Make these structures fully synchronized.
• Make these structures implement the proper swing model interfaces and link them

to the related graphic classes inside the GUI module.
• Define proper renderer classes when necessary.

With reference to the example above, by applying these rules it is possible to end up with
a tree structure optimized to perform fast searches and it would be made to implement the
javax.swing.ListModel interface. Inside the GUI module, a javax.swing.JList
object would be kept linked to the ListModel implemented by the tree structure.

Unfortunately, the swing model interfaces are often quite complex, and as a consequence,
following the presented approach may not be straight forward. Therefore, the decision on
whether or not to adopt it is left to the developers on a case by case basis.

Additional indicators are left for possible future refinements of the methodology.

4.7.2 Web GUI based on JSP

This section provides guidance about the development of a web interface to a JADE
multi-agent system implemented using Java Server Pages (JSP) technology [16]. The
proposed approach is based on the creation of a dedicated agent inside the JSP, acting as
gateway between the JSP and the JADE world (i.e. the other agents in the system). In
particular, it is suggested to use the JADEGateway and GatewayAgent classes included
in the jade.wrapper package in JADE 3.38, which hides from JSP developer’s point of
view the volatile nature of the agent acting as gateway. This is to say that an agent
created inside a JSP is not guaranteed to stay alive forever, since the JSP container may
suddenly shut it down. Therefore, managing a direct pointer to the agent may become
complex since one always needs to take into account that the agent may have died in the
meantime. The JADEGateway is essentially a proxy that hides to JSP developers the
above complexity and automatically manages agent re-creations when needed.

There is a singleton JADEGateway object that embeds a container and a GatewayAgent
on it. The JADEGateway provides the execute() method by means of which generic
objects can be submitted to the GatewayAgent inside the JADEGateway. The
processCommand() method of the GatewayAgent must be redefined to process objects
passed to the JADEGateway execute() method. The execute() method returns as

8 The current version of JADE (9th of November 2005).

 27

soon as the GatewayAgent processing the Object passed to the execute() method calls
the releaseCommand() method specifying that Object as argument.

An efficient way to exploit these classes can be achieved by applying the following rules:

1. Do not embed any status information inside the GatewayAgent. Status
information is intrinsically embedded into the multi-agent system and there is no
need to duplicate it. Caching status information inside the GatewayAgent to
improve performances is typically not relevant since the performance bottleneck
is always the web stuff.

2. Use domain specific “bean-behaviours” as arguments when invoking the
JADEGateway.execute() method. The term “bean-behaviours” refers to
behaviours with proper get and set methods for all domain specific parameters
to be passed by the JSP to the JADE system and from the JADE system back to
the JSP.

3. Extend the GatewayAgent redefining the processCommand() method as shown
in Figure 13 below:

Figure 13. Code for rule 3.

4. Call the releaseCommand() method of the GatewayAgent inside the onEnd()
method of each bean-behaviour as shown in Figure 14 below:

Figure 14. Code for rule 4.

4.8. Step 8: Internal Agent Behaviours

The actual job an agent has to do is typically carried out within the agent’s
“behaviour(s)”. Hence, in this step, the system designer should look at the agent
responsibilities (via the responsibility table) identified in the analysis phase and map
them to agent behaviours.

First of all, the following rule should be applied:

For a responsibility related to an interaction in the interaction table described in
Step 2 of the design phase (Section 4.2), obtain the JADE class implementing the

protected void processCommand(Object obj) {

addBehaviour(Behaviour) obj);

}

public int onEnd() {

((GatewayAgent) myAgent).releaseCommand(this);

return super.onEnd();

}

 28

interaction protocol and role selected for that interaction and provide a suitable
extension.

In the cinema organizer case study, for instance, the “serve requests to initiate invitations
from the cinema organizer user” responsibility corresponds to an interaction in the
interaction table where the cinema organizer agent plays the initiator role in a Contract-
Net protocol. Therefore the behaviour implementing that responsibility should be a
proper subclass of the jade.proto.ContractNetInitiator class.

Other responsibilities must be implemented using completely application-specific
behaviours and therefore it is quite difficult to provide a formal guidance for this process.
The suggestion, in any case, is not to extend the jade.core.Behaviour class directly,
but to start from the JADE classes that implement the skeletons for commonly required
types of task. These classes include:

• OneShotBehaviour: implementing an atomic task that runs once and terminates
immediately.

• CyclicBehaviour: implementing a task that is always active, and performs the
same operations each time it is scheduled.

• TickerBehaviour: implementing a task that periodically executes the same
operations.

• WakerBehaviour: implementing an atomic task that runs once after a certain
amount of time, and then terminates.

When dealing with complex responsibilities, it is suggested to attempt splitting them into
a number of simpler tasks combined together and adopt one of the composite behaviour
classes provide by JADE. These composite behaviour classes include:

• SequentialBehaviour: implementing a composite task that schedules its sub-
tasks sequentially.

• FSMBehaviour: implementing a composite task that schedules its sub-tasks
according to a Finite State Machine9.

Composite behaviour can be nested and therefore there can be, for instance, a subtask of
a SequentialBehaviour that is on its turn a FSMBehaviour and so on. In particular, all
complex responsibilities that can be modeled as Finite State Machines can be effectively
implemented as FSMBehaviour instances.

To demonstrate an example of a complex responsibility, take for instance the “let the
cinema organizer user select friends to invite” responsibility (see Table 3). This
responsibility can be modeled as a Finite State Machine, and is shown by the State
Transition Diagram in Figure 15 (note that this is a hypothetical example to demonstrate
the point and doesn’t necessarily represent efficient operation).

The State Transition Diagram in Figure 15 demonstrates that for the responsibilities
defined in the analysis phase, there may be many “sub-responsibilities” (unanticipated

9 A Finites State Machine (FSM) is a software (or hardware) entity that, when working, can be modeled as
a sequence of states, such that the entity is only in one state at one time. Finite State Machines are typically
represented using State Transition Diagrams.

 29

responsibilities arising from the main responsibilities in the responsibility table) when
mapping to agent behaviours (leading to an update of the responsibility table). Moreover,
during the process of defining agent behaviours, an interaction may arise that was
unanticipated in the earlier stages of the design phase. For example, the “update friends
list” state (sub-responsibility) shown in Figure 15, requires an interaction with the other
cinema organizer agents in order to update the friends list. This will lead to the update of
the interaction table and subsequent definition of a behaviour that is a proper subclass of
the jade.proto.ContractNetInitiator class (in this case the cinema organizer
agent will play the Initiator role in a Query protocol).

4.9 Step 9: Defining an Ontology

When agents in the system interact, they exchange information that refers to entities,
abstract or concrete, that exist in the environment agents reside in. These entities may be
primitive, such as a String or a number, or may have complex structures defined by
templates specified in terms of a name and a set of slots whose values must be of a given
type. These complex entity templates are referred to as Concepts. For example, in the
cinema organizer case study, there may be concepts such as those shown in Figure 16.

Allow user
to browse
friends list

Allow user
to select
friends

Prompt
user to
select
friends

Success

Update
friends list

System
Error

All desired
friends

available
in listAll desired

friends
not available

in list

User doesn't take an action
 for a certain period of t ime

User acknowledges
prompt

Friends list
updated

Friends
list not
updated

Original
Screen

Go back to
original screen

Unsuccessful

Go back to
original screen

User doesn't
acknowledge
prompt after certain
period of t ime

User chooses
friends and
presses the

"Done" button

Figure 15. State Transition Diagram for “let the cinema organizer user select friends

to invite” responsibility.

 30

Figure 16. Example concepts for cinema organizer case study.

Moreover, entities are typically related by means of relations that can be either true or
false. Similar to complex entities, relations also have structures defined by templates
and again, these templates are specified in terms of a name and a set of slots whose
values must be of a given type. These relation templates are referred to as Predicates and,
considering in the cinema organizer case study, predicates such as those shown in Figure
17 can be allocated.

Finally, a particular kind of complex entity is represented by descriptors of actions that
agents can perform. The templates of these action descriptors are referred to as
AgentActions. Figure 18 shows a possible agent action (to be performed by the
localization agent) relevant to the cinema organizer case study.

Actions, when executed, may produce an effect and/or generate a result to be sent back to
the requester. For instance, the LocatePhone action, shown in Figure 18, will return to the
requester the city where the mobile phone, whose number is specified as parameter of the
action, is currently in.

An ontology is a set of concepts, predicates and agent actions referring to a given
domain. Some more details on expressing ontologies are provided in the following
section.

Movie:

 - title (String)

 - duration (long)

Cinema:

 - name (String)

 - address (Address)

Address:

 - city (String)

 - street (String)

 - number (int)

 31

Figure 17. Example predicates for cinema organizer case study.

Figure 18. A possible agent action performed by localization agent.

4.9.1 Formalisms for Expressing Ontologies

Different formalisms can be adopted for expressing an ontology. In the proposed
methodology, a graphical formalism is advocated, based on UML class diagrams as
shown in Figure 19.

The following points should be noted in relation to Figure 19:

• Each ontological template is expressed as a class.
• The stereotype is used to differentiate between concepts, predicates and agent

actions.
• A slot of an ontological template whose type is primitive is expressed as an

attribute of the corresponding class.
• A slot of an ontological template whose type is itself a concept in the ontology is

expressed as a role of an association linking the ontological element that owns the
slot with the concept representing the type of the slot.

• Effects and results produced by the execution of an action are documented as
comments attached to the agent action.

• The inheritance relation is used (not shown in Figure 19) as usual to indicate that
an ontological template is a specialization of another ontological template.

4.9.2 Heuristic rules

Defining an ontology is typically not an easy task since the same domain can typically be
described by means of several different sets of concepts, predicates, and agent actions,
i.e. by means of several different ontologies. For example, an alternative ontology for the
cinema organizer domain is represented in Figure 20.

Generally, there are a number of choices that must be made. The most important ones are
indicated in the following three sections (Sections 4.9.2.1-4.9.2.3). It should be noted that

IsScheduled:

 - what (Movie)

 - where (Cinema)

 - when (time)

LocatePhone:

 - number (int)

 32

the details that motivate the outcome of each choice become clearer as the development
process progresses. For this reason, the ontology is typically refined while iterating
through the steps in the design phase.

4.9.2.1 Ontology Boundaries

An ontology is essentially a model of the application domain addressed by the system.
Moreover, it is not always trivial to decide which types of entities and relations to model
inside the ontology. On the one hand, it is desirable to keep the ontology as simple as
possible, while on the other hand, it must be ensured that the ontology is complete
enough to allow agents to perform their jobs. The guideline provided to drive this choice
is the following:

Include in the ontology only concepts and predicates that agents need to talk
about, i.e. whose instances must be encoded inside the content of ACL10 messages
exchanged by two or more agents in the system.

4.9.2.2 Predicates versus Concept Slots

Each time entities of a complex type X are related to entities of type Y, this can be
expressed either by adding a slot of type Y in concept X or by adding a predicate that

10 ACL is the abbreviation for agent communication language.

Address
String city
String street
int number

<<Concept>>

Movie
String title
long duration

<<Concept>>

IsScheduled
time when

<<Predicate>>

Cinema
String name

<<Concept>>

+address

+what

+where

LocatePhone
int number

<<AgentAction>> Return the city a
given phone is
currently in

Figure 19. The cinema organizer ontology.

 33

relates X and Y. For example, the fact that a cinema has a given address, can be
expressed either by a slot of type Address in the Cinema concept (as in Figure 19) or by a
predicate IsIn that relates a cinema and an address (as in Figure 20).
To guide this choice, the following heuristic rule is provided:

When, given an entity of type X, the related entity of type Y is fixed and will
never change, use a slot. Conversely, when the latter can change during the
lifetime of the system that is being developed, use a predicate.

In the example above, applying the rule would lead to the first choice, since it can be
confidently assumed that the address of a given cinema will never change.

4.9.2.3 Information Retrieval

It is often the case that an agent in the system must retrieve some information from
another agent. Using the ACL language, as JADE agents do, this may be achieved
through either a QUERY_REF message including a proper Identifying Referential
Expression (e.g. (iota ?x (p ?x))) as content, or a REQUEST message specifying
an action whose result is the information that must be retrieved. This choice is clearly
related to the ontology. If the cinema organizer case study is considered, a cinema
organizer agent needs to retrieve from the localization agent the current city. In the
ontology depicted in Figure 19, the cinema organizer agent would have to request the
localization agent to perform the LocatePhone action, i.e.:

Movie
String title
long duration

<<Concept>>

IsScheduled
time when

Cinema
String name

<<Concept>>

IsIn
<<Predicate>>

Address
String city
String street
int number

<<Concept>>

+what

+where

+what

+where

IsLocated
int phoneNumber
String city

<<Predicate>>

Figure 20. An alternative ontology to describe the cinema organizer domain.

 34

(REQUEST (action …. (LocatePhone :number <phone number>)))

In the ontology depicted in Figure 20, on the contrary, it would have to query the
localization agent for the city that makes the IsLocated predicate hold for its phone
number, i.e.:

(QUERY_REF (iota ?c (IsLocated <phone number> ?c)))

There are advantages and disadvantages in both alternatives. Defining predicates in the
ontology is the tidiest and most flexible approach and typically allows one to keep the
ontology smaller. In contrast, dealing with identifying referential expression is more
complex. As a heuristic rule, the following is provided:

• If the agent providing the information to be retrieved includes a knowledge base
that is able to handle Identifying Referential Expression directly, define predicates
in the ontology. Otherwise, define actions.

4.9.3 Tools for Defining an Ontology11

JADE provides a sophisticated mechanism, described in [4], to handle ontological
elements as instances of Java classes that are basically beans with proper get and set
methods for all the slots in the template and to automatically convert them back and forth
strings to be used as message contents. When moving from the design to the
implementation, the creation of these ontological Java classes is very straightforward,
but, especially when dealing with large ontologies with a lot of templates, it may be quite
time consuming. Thanks to a proper plug-in, (called beangenerator) implemented by C.J.
van Aart from the Department of Social Science Informatics at the University of
Amsterdam [1], it is possible to define the ontology using Protégé [26], and then let the
beangenerator automatically create the ontology definition class and the predicates, agent
actions, and concepts classes. Use of this approach is particularly convenient when:

• There are several templates in the ontology.
• The ontological classes do not require any other method than the get and set

methods corresponding to the ontological template slots.
Furthermore, if other methods or fields are added manually after the automatic
generation, and if the ontology must subsequently be modified and therefore re-
generated, all manual modifications are not preserved by the beangenerator.

4.10 Step 10: Content Language Selection

JADE provides codecs for two content languages: the SL language and the LEAP
language (through the jade.content package). Furthermore, a codec can be defined by
a programmer if they desire for the agents to “speak” a different content language [4].

The SL language is a human-readable string-encoded content language, while LEAP is a
non-human readable byte-encoded content language. Based on this, some heuristics on
choosing the appropriate content language are as follows:

11 This section is tied to the implementation phase.

 35

• SL is suitable for agent based applications that are (or can become) open (i.e.
where agents from different developers, running on different platforms must
communicate).

• The LEAPCodec class is lighter than the SLCodec class. Thus, when there are
strong memory limitations the LEAP language is preferable. For example, for
applications which rely on portable devices such as mobile phones, the LEAP
language is much more preferable. Conversely, for applications where high
capacity computers are involved, the SL language is more suitable.

• When it is required that a content language be used that should be readable by
humans, SL should be chosen; otherwise, if there are no such requirements, it is
advisable to use LEAP.

• If the developer wishes to define their own codec, they should do so in such a way
that it is consistent with the languages handled by the resources, e.g. SQL, XML,
RDF, etc. For more information, refer to [4, 28, 32].

In the case of the cinema organizer case study, since mobile phones are involved, which
have a low capacity compared to computers, the LEAP language is undoubtedly the best
option.

4.12 Design Summary

Once the analysis has been carried out, a move is made to the design phase, which aims
to specify the solution. The solution focuses on the JADE platform. It is possible to move
back and forth between the analysis and design whenever necessary. The steps in the
design can now be summarized below:

• Step 1: Agent Splitting/Merging/Renaming. By considering system performance
and complexity in relation to the agent deployment diagram produced in analysis,
it is determined whether agents should be split, merged or left as is.

• Step 2: Interaction Specification. All responsibilities in the responsibility table
related to an acquaintance relation with another agent are considered, and the
interaction table produced for each agent type.

• Step 3: Ad-Hoc Interaction Protocol Definition. In the case that an existing
interaction protocol can not be used for an interaction, an ad-hoc interaction
protocol is defined using a suitable formalism.

• Step 4: Message Templates. The interaction table is updated to specify suitable
MessageTemplate objects in behaviours to receive incoming messages.

• Step 5: Description to be Registered/Searched (Yellow Pages). The naming
conventions and the services registered/searched by agents in the yellow pages
catalogue maintained by the JADE directory facilitator are formalized. A class
diagram form is used as a representation.

• Step 6: Agent-Resource Interactions. Based on the agent diagram produced in
analysis, passive and active resources in the system are identified, and it is
determined how agents will interact with these resources.

• Step 7: Agent-User Interactions. Based on the agent diagram produced in
analysis, agent-user interactions are identified and detailed.

 36

• Step 8: Internal Agent Behaviours. Based on the responsibility table produced in
analysis, the agent responsibilities are mapped to agent behaviours. Different
types of responsibilities (including interactions) will require different types of
agent behaviours to be specified.

• Step 9: Defining an Ontology. An appropriate ontology for the domain is
specified, by making a number of considerations.

• Step 10: Content Language Selection. By following some rules, a suitable content
language is selected.

• Iterate Steps 1-10. Move back and forth between analysis and design whenever
necessary.

The artifacts produced in each step of the design and their relationships to those produced
in the analysis are summarized in Figure 21 (design relationships are in bold).

Use Case
Diagram

Agent
Diagram

Responsibility
Table

Agent
Deployment

Diagram

update

update

Iterate: Steps 1-6

Step 1

Step 2

Step 6

Step 5

Step 4

Step 3

Analysis

Step 1

Step 2

Step 6

Step 5

Step 4

Step 3

DesignMove back
and forth

use

Interaction
Table

use

Ad-Hoc
Interaction
Protocol

?

update

Step 8

Step 7

Step 10

Step 9

Iterate: Steps 1-10

Class Diagram
Form

use

use

use

Ontology

–

Figure 21. Summary of the design phase.

 37

5. Post Design

As stated in the Methodology Overview (Section 2), the proposed methodology does not
attempt to formalize implementation, and related issues such as deployment and testing.
However, by completing the steps of analysis and design, the multi-agent system designer
should have a good idea of how the system should be implemented using the JADE
platform. Thus, the systems designer can proceed to implementation by consulting the
rich set of tutorials, programming APIs and other documentation on the JADE website
[15], which have been provided by both the JADE team and third party contributors.
Furthermore, the development of an automatic code generation tool to produce code
based on the results of the design phase would be very useful, and hence, is left as
possible candidate for further work (see Further Work, Section 7). The user should
always remember that in the end, the development of a multi-agent system using JADE is
done through the Java language, and hence, standard Java coding practices should be
adhered to.

6. Applicability to other Agent Development Platforms

The ideas presented in the analysis and design steps can be adapted to other platforms if
the designer wishes. Specifically, the concepts of agent behaviours, ontologies,
interactions between agents, content language selection, etc, are all abstract concepts of
the agent paradigm, and hence, can be adapted to other platforms which have the means
to support such concepts. It should be noted that if the desired platform is FIPA-
compliant (as JADE is) the adaptation of this methodology should be easier. Furthermore,
as mentioned in several parts of the methodology, the steps provided in analysis and
design serve as a guide and can be removed or other steps added if deemed necessary.

7. Conclusions and Further Work

The JADE platform is a popular, FIPA-compliant platform for the development of multi-
agent systems. However, prior to this, no formal methodology had been proposed for the
analysis and design of multi-agent systems using the JADE platform. The proposed
methodology serves to fill this gap and, in conjunction with the tutorials and other
resources provided by the JADE team and contributors, allows the system designer to
fully build a multi-agent system, from requirements to implementation.

The proposed methodology assumes that an agent-based solution has been chosen as the
best alterative, from a range of options. The proposed methodology does not explicitly
provide pointers on when an agent-based solution should be used, but provides
references, which can be consulted when a designer is contemplating an agent-based
solution. Furthermore, the literature has many examples of multi-agents systems being
developed for a wide range of applications. Paying attention to such cases will thus help
to determine if an agent-based solution is the best choice.

 38

The proposed methodology has been presented as a series of steps, therein containing
(where appropriate) guidelines for creating artifacts, heuristic rules, notations and design
patterns for the designer to use and adapt (when necessary) to their own situation. It is not
essential that the proposed methodology be strictly followed, and it should only serve as a
means of guidance in the development process. In addition, the designer is encouraged to
use their own imagination (in a rational manner), and add or remove steps as they desire,
in order to adapt the proposed methodology to their own needs. Following the steps in the
methodology should be an active process and the designer should continuously iterate the
steps and move back and forth between analysis and design whenever necessary.

Though the methodology fills a gap (as outline above), there are several issues remaining
for future work, which include:

• The definition of a meta-model.
• More emphasis on agent internal structures and mechanisms.
• Addressing of additional requirements such as security, persistency/transaction,

non functional requirements such as performances and scalability.
• Development of a FSM-based formalism in compliance with the JADE platform,

which will provide a means for complex interactions to be modeled.
• Development of an automatic tool to automatically generate code based on the

constructs developed in the design phase.
• Comparison of the proposed methodology with other currently existing

methodologies for multi-agent system development (using guidelines such as
those provided in [31]).

• Formal adaptation and extension of the methodology to other multi-agent
platforms including those platforms which have capabilities for defining agent
mental attitudes.

The final point is quite important and will be very desirable and valuable for developers
using or having had experience with other platforms.

Acknowledgements

The authors would like to thank the Australian Research Council (ARC), Parker Centre,
Murdoch University, and Telecom Italia Lab (TILAB) for their support.

 39

References

1. Beangenerator, see: http://acklin.nl/beangenerator/.
2. A. H. Bond and L. Gasser (Eds.), Readings in Distributed Artificial Intelligence,

Morgan Kaufmann Publishers: San Mateo, CA, 1988.
3. S. Bussmann, N. R. Jennings, and M. Wooldridge, Multiagent Systems for

Manufacturing Control, Springer-Verlag, 2004.
4. G. Caire and D. Cabanillas, “JADE tutorial: creating and using application specific

ontologies”, 2004, see: http://jade.tilab.com/doc/CLOntoSupport.pdf.
5. G. Caire, W. Coulier, F. Garijo, J. Gomez, J. Pavon, F. Leal, P. Chainho, P. Kearney,

J. Stark, R. Evans, and P. Massonet, “Agent Oriented Analysis Using
Message/UML,” Lecture Notes in Computer Science, M. Wooldridge, G. Weiss, and
P. Ciancarini (Eds.), Springer-Verlag, vol. 2222, 2002, pp. 119-135.

6. C. Campo, Directory Facilitator and Service Discovery Agent, FIPA Document
Repository, 2002, see: http://www.fipa.org/docs/input/f-in-00070/f-in-00070.pdf.

7. A. Collinot, A. Drogoul, and P. Benhamou, “Agent oriented design of a soccer robot
team,” in Proceedings of the 2nd International Conference on Multi-Agent Systems
(ICMAS-96), Kyoto, Japan, 1996, pp. 41–47.

8. R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng, “Modeling agent conversations
with colored petri nets,” in Workshop on Specifying and Implementing Conversation
Policies, 1999, pp. 59-66.

9. A. Dennis and B. H. Wixom, Systems Analysis and Design: An Applied Approach,
John Wiley and Sons, 2000.

10. Foundation for Intelligent Physical Agents (FIPA), see: http://www.fipa.org/.
11. FIPA Interaction Protocol Specifications, see: http://www.fipa.org/repository/ips.php3.
12. The FIPA AUML Web Site, see: http://www.auml.org/.
13. M. R. Genesereth and S. P. and Ketchpel, "Software Agents," Communication of the

ACM, vol. 37(7), 1994.
14. L. Hampton, R. C. Martin, F. G. Pitt, and T. Ottinger, A Critique of Use Cases, 9

July 1997, see: http://ootips.org/use-cases-critique.html.
15. JADE – Java Agent DEvelopment Framework, see: http://jade.tilab.com/.
16. JavaServer Pages (JSP) Technology, see: http://java.sun.com/products/jsp/.
17. N. R. Jennings, “Agent-based Computing: Promise and Perils,” Proceedings of the

16th International Joint Conference on Artificial Intelligence (IJCAI-99),
Stockholm, Sweden, 1999, pp. 1429-1436.

18. N. R. Jennings and M. Wooldridge, “Applications of intelligent agents,” in Agent
Technology: Foundations, Applications and Markets (Eds. N. R. Jennings and M.
Wooldridge), pp. 3–28. Springer, Berlin, 1998.

19. M. Luck, R. Ashri, and M. D’Inverno, Agent-Based Software Development, Artech
House Publishers, 2004.

20. M. Luck, P. McBurney, and C. Preist. “Agent Technology: Enabling Next
Generation Computing,” AgentLink, 2003, see:
http://www.agentlink.org/admin/docs/2003/2003-48.pdf.

21. E. Milgrom (Ed.), “Final guidelines for the identification of relevant problem areas
where agent technology is appropriate” (from the MESSAGE methodology),
EURESCOM, 2001, see:

 40

http://www.eurescom.de/~pub-deliverables/P900-series/P907/D2/p907d2.pdf.
22. The Model-View-Controller, see:

http://java.sun.com/blueprints/patterns/MVC-detailed.html.
23. M. Nowostawski, M. Purvis, and S. Cranefield, “A layered approach for modelling

agent conversations,” Second International Workshop on Infrastructure for Agents,
MAS and scalable MAS, Montreal, Canada, 2001.

24. J. Odell, “Objects and agents: how do they differ?,” Journal of Object-Oriented
Programming, October 2000.

25. H. V. D. Parunak, “Visualizing agent conversations: using enhanced Dooley graphs
for agents design and analysis,” Proceedings of the Second International Conference
on Multi-Agent Systems (ICMAS’96), 1996.

26. Protégé, see: http://protege.stanford.edu/.
27. S. Paurobally, J. Cunningham, and N. R. Jennings, “Developing agent interaction

protocols graphically and logically,” Proceedings of the First International
Workshop on Programming Multi-Agent Systems, Melbourne, Australia, 2003, pp.
45-54.

28. F. Quarta, How to use the XML support with JADE, 2003, see:
http://jade.tilab.com/doc/tutorials/XMLCodec.html.

29. Y. Shoham, “Agent Oriented Programming,” Artificial Intelligence, vol. 60(1), pp.
51-92, 1993.

30. T. Skylogiannis, “Automated Negotiation and Semantic Brokering with Intelligent
Agents Using Defeasable Logic,” MSc Thesis, 2005, see:
http://www.ics.forth.gr/isl/publications/paperlink/Skylogiannhs.pdf.

31. A. Sturm and O. Shehory, “A framework for evaluating agent-oriented
methodologies,” Agent-Oriented Information Systems, 5th International Bi-
Conference Workshop (AOIS 2003), Melbourne, Australia, July 14, 2003.

32. P. Turci, How to use the RDF support with JADE, 2001, see:
http://jade.tilab.com/doc/tutorials/RDFCodec.html.

33. Unified Modeling Language (UML), see: http://www.uml.org/.
34. M. Wooldridge, An Introduction to Multiagent Systems, John Wiley and Sons, 2002.
35. M. Wooldridge, N. R. Jennings, and D. Kinny, “The gaia methodology for agent-

oriented analysis and design,” Autonomous Agents and Multi-Agent Systems, vol.
3(3), pp. 285-312, 2000.

36. M. J. Wooldridge and N. R. Jennings “Pitfalls of agent-oriented development,”
Proceedings of the 2nd International Conference on Autonomous Agents (Agents-
98), Minneapolis, USA, pp. 385-391, 1998.

37. M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and practice,” The
Knowledge Engineering Review, vol. 10(2), pp. 115-152, 1995.

